DESORIPTIONS

(1F
soutil africay sponties PARTII.
K. KIRKPATRIOK, F.Z.s. BRITISH MUんよIM (NATURAL HISTORY)

The present paper includes a description of the Lithistid Sponges obtained by Dr. J. D. F. Gilchrist off the Cape and Natal coasts, and sent by him to the British Museum (Natural History). The collection comprises eight specimens representing four species, all of which are new, and four genera, of which three are new. A description is given also of a new species of Triptolemns found in the canals of a dead Lithistid skeleton. The following is a list of the genera and species:-

()rder LITHISTIDA.

Sub-Order HOPLOPHORA.

Family Tetracladidæ.

Discodermia natalensis, sp. n.

Family Scleritodermidæ.

Microscleroderma hirsatum, gen. et sp. 30\%.

Sub-Order anOPLIA.

Family Azoricidæ.

Lithobactrum forte, gen. ct sp. nov.

Family Desmanthidæ

Monanthus plumosus, gen. et sp. nov.

Order CHORISTIDA.

Family Theneidæ.
Triptolemus incertus, sp. n.

Discodermia natalensis, sp. n.
Plate iv., figs. 2, 2a-k, and 3, 3a-d.
Sponge cup-shaped, sub-pedicellate. Outer or poral surface smooth, showing a fine branching venation; inner or oscular surface showing broad bands of minute circular oscules, and beneath the surface, lines of orifices of excurrent canals radiating from the base to the edge of the cup. Pores in groups of two, three, or four, in sub-circular pore areas 150μ in diameter ; oscules in oscular areas about 250μ in diameter, usually one, but occasionally two oscules in each area.

Spicules. Megascleres.-Desma with cylindrical smooth or slightly tuberculated epactines ($100 \times 3 \mu$) dividing into much tuberculated branches, the tubercles cylindrical with flattened summits or forming sharp ridges ; crepidial axes, each 55μ.

Phyllotriæne of poral surface: rhabdome 90μ, conical, pointed ; cladome tetracladose, the branches enclosing almost circular pore areas; protocladi 90μ, deuterocladi 60μ, tritocladi from $60-100 \mu$; crepidial axes about 40μ.

Discotriæne (or modified phyllotrixenc) of oscular surface with irregularly lobed disk, sometimes giving off three unequal cladi ; crepidial axes about 30μ.

Style $360 \times 7.5^{\mu}$, in sparsely scattered bundles near and at right angles to the surface.

Oxea $750 \times 6 \mu$, slender, straight or irregularly curved.
Tyle $140 \times 5 \mu$, head 6μ in length and width, neck 45μ, scattered about in the tissues.
(These small tyles might be included among the microscleres).

Microscleres.-Microxea $80 \times 1 \mu$, slender, straight, smooth.
Microstrongyle $20 \times 3 \mu$, straight, fusiform, with granular surface.

Colour dull white, texture hard.
Localities: The type specimen from Natal coast (O'Neil Peak bearing N.N.W. $\frac{1}{4}$ W., distant 8 miles), depth, 55 fathoms; bottom, broken shells.

A second specimen (much worn) also from Natal (Cape

Vidal bearing N.N.E. $\frac{1}{4}$ N., distant $9 \frac{1}{2}$ miles), depth, $80-100$ fathoms; bottom, rock.

The type specimen has evidently been cut in half, one piece only having been sent to the British Museum.

The cup, which is shallow and expanded, is about 7 cm . in diameter, at the mouth, with an inside depth of 3 cm ., and a height of 6 cm ., the wall being I cm . thick.

The second specimen, which I at first thought to belong to a different species, is also only a half specimen; the shape is rather that of a vase or funnel than a cup, the height being 5 cm ., diameter of mouth 7 cm ., depth of cavity 4.25 cm ., and thickness of wall 6 cm . The walls of the second specimen are flexible, and resemble dark sandstone in appearance; the whole ectosomal surface has been worn away, leaving only the framework of desmas; the spicules (desmas, styles, microxea) resemble those of the type specimen, but the microstrongyles (Fig. 3d) vary slightly, being for the most part cylindrical rather than fusiform. Interspersed through the skeletal framework is a new species of Triptolemus, which is described at the end of this paper.

The new species is most nearly related to Discodernia discifurca Sollas from Port Jackson ; the slender, straight, smooth microxeas of the former differ markedly from the thicker, curved granular microxeas of the latter species. Further, the small tyles scattered in some abundance in the tissues of D. natalensis form a distinctive feature.

Family Scleritodermidæ.

Microscleroderma, gen. now
Scleritodermidæ in which the ectosomal spicules are minute sigmaspires.

Microsleroderma hirsutum, sp. n.

Sponge cup-shaped, expanding from a short massive pedicelInner surface uniformly covered with slightly raised oscules $I^{2} 2 \mathrm{~mm}$. in diameter, and smooth between the oseules. Outer surface pilose and corrugated, the thick rounded rugre rumning from base to edge and branching more or less dichotomously; pores, about $\cdot 25 \mathrm{~mm}$. in dianeter, distributed over extensive cribriform areas in the fosse and valleys between the rugæ. Edge of cup thick and rounded. Colour of dried specimens pale brown ; white in section.

Skeleton formed of monocrepid desmas united into a regular honeycomb-like framework, with oval smooth-edged fenestra
$320 \times 220 \mu$ in diameter ; with bundles of oxeas between the longitudinal rows of fenestra, and passing 2 to 4 mm . beyond the outer surface, thus giving rise to a fincly hirsute appearance especially in the fossa and valleys.

Ectosomal spicules minute sigmaspires.
Spicules.-Oxcats 2000 to 5000×12 to 30μ, slender, often undulating in outline, tapering to sharp points.

Desma, senerally with curved or semilunar epirhabd averasing $400 \times 30 \mu$ and ofter bifurcate at the ends, smooth on the concare edge, tuberculated and cladose on the convex surface, one chadus in the middle of the convexity, often being of large size and uniformly tuberculated; again, the epirhatd may be almost straight and uniformly tuberculated and cladose.

Sigmaspire, $16.5 \times 1.2 \mu$, usually C -shaped, occasionally with an extra coil, with rounded ends and with granular surface. (The thickenings at the ends, shown in Fig. Ie, disappear on focussing carefully.)

Locality: Durnford Point, Natal, hearing N.W. ${ }_{3} \mathrm{~W}^{2}$., distant 12 miles; depth, go fathoms; hottom, broken shells.

There are two specimens of this species, the dimensions in eentimetres being as follows:-

Large specimen. Small Specimen.

Height	\cdots	\cdots	17
Diameter of orifice	\cdots	22×18	$5 \cdot 5$
Length of peedicel	\cdots	3	6
Diameter	\cdots	1.3	
Thickness of wall	\cdots	7×5	3×2
Depth of cavity	\cdots	1.5	.57
		11	2.5

On the outer surface of the larger specimen is an athen gray patch of dead sponge 3 cm . in diameter and 3 mm . in thickness. Several small holes on the surface lead to sand-lined tuber, probably of some worm. The desmas are thicker and more tuberculated in the patch than elsewhere.

The abonece of ectosomal microstrongyles from this species led me to suspect that the spicules of this kind occurring in Scleritodermo mobelliforme Sollas and S. parkordi Schmidt were large sigmaspires, and a careful examination tended to confirm this view. The microstrongyles of S. flabelliforme are identical with the eigmaspires in all respects exeept size, since they are C shaped, occationally with an extra coil, with rounded ends and gramular surface; the resemblance in the case of S. packardi is less obrious. The ectosomal rhath of Aciculites, which are curved and usually with granular ends, are also possibly dereloped from minite sigmaspires.

Briefly, the three sencra of Sclevitodermider are thus characterised :

> Microscleroderma, ectosomal spicules minnte sigmaspires. Scleritoderma, ectosomal spicules minute sigmaspires, and mierostrongyles (? large sigmaspires).
> Aciculites, ectosomal spicules thabeli only i? modified sigma-pires).

Family Azoricidæ.

Lithobactrum,* gen. now.

Azoricide massive cluh-shaped, with uniformly distributed pores at the sides, and with mumerous small ascules on the rounded summit; with fine paralleł incurrent canals radiating horizontally inwards from the pores, and excurrent canals passing vertically upwards to the oscules.

Lithobactrum forte ap. in.

> Plate iv.. fiss. i, mats.

Sponge with characters of the genus.
Pores nearly circular, 25 mm . in dianeter; oscules, .75 to 1 mm . in diameter, flush with the surface, sharp edged, otal or circular, in groups with an ohecurely radiating arrangement.

Skeleton composed of monocrepid desmat, forming a compact lining to the canals, but looser between the canals.

Spicules. Desmas of the usual monocrepid type (Fig. 5c-f), $450 \times 50 \mu$; crepis 70μ.

Amphityle $992 \times 8 \mu$, with long oral heads, one larger than the other, the larger heings $+\times 8 \mu$, and the smatler $10 \times 5 \mu$.

Other kinds of monaxon spicules (oxeas, styles, tyles) occur, but are very probahly adrentitious. The amphityles occur decp in the sponge, and intimately associated with the desmas.

Colour, glistening white.
Locality: O'Neil Peak, Natal Coåst, bearing N.N..W. IT., distant 8 miles ; depth, 55 fathoms; hotom, broken shells.

Following the example of Schmidt and sollas, the characters of the genns have been based on the external form and the arrabsement of the pores. aseules and canal-ssisem; and as Azoricid sponges are deroid of an ectosomal skeleton and of microseleres, there is not much else to fall back upon.

There are two specimens of this fine sponge. The larget grows from ann expanded hase ($7 \times 5 \mathrm{~cm}$.), immediately abowe

[^0]Which it contracts, and then expands gradually to the summit. The height is 18 cm ., breadth 8.5 cm ., and thickness 4.5 cm ., so that the club is slightly flabelliform ; the area of the rounded summit is $5 \times 4 \mathrm{~cm}$.

The smaller specimen has been broken off sharp from its attachment, exposing excurrent canals 1 mm . in diameter; its shape is more cylindrical than the first, and resembles a milestone; its height is 7 cm ., and its diameter +cm ., the diameter at the base being $2+\mathrm{cm}$., and at the summit $3 \times 2 \mathrm{~cm}$.

Locality: O'Neil Peak, Natal Coast, hearing N.N.W. $\frac{1}{4}$ W., distant 8 imiles ; depth, 55 fathoms; hottom, broken shells.

Family Desmanthidæ.

Monanthus, sen. now.
Desmanthide in which the akeleton is formed of monocrepid desmas of the common twpe, separate or joined together, and of monaxon megascleres.

Monanthus plumosus, sp. n.

Plate iv., fiss. O, Gace Figs. 7. 7a, h.
Deseription of the type specimen (Fig. 7, 7a, b). Sponge forming a thick white crust, firm but compressible, with several round oscules flush with the surface.

Skeleton composed of plamose columus extending from base to surface, and formed of bunctles of oxeas (mostly) and styles; between the colmmes monocrepid desmas isolated and separate or here and there loosely articulated with each other.

Spicules-Desma, with smosth epirhatod 1 fo \times fo μ, often bifurcating at each end with flattened branches, sharp-edged or expanded into flattened articular surfaces; erepidial axis 8o μ.

Oxea, $480 \times 25 \mu$, smooth, curved, sharp-pointed.
Style, $600 \times 28 \mu$, slightly curved.
Thiele (Ueher C'rambe crambe (O.S.) Archis: f. Naturgesch, 1899, p. 89) expresses (loubt whether Topsent's genus Desmanthus is Lithistid of Monaxonid; and possibly the position of Monantlus would be subjeet to the same doubt. The desmas of Desthoththes are tetracrepid, and those of Monanthus monocrepid; in both instances the desmas seem to be of the ordinary Lithistid type, though in the case of Moncuthus they often appear to be undergoing degeneration; even in isslated spicules, howerer, well formed articular surfaces often persist, clearly showing that these spicules are derived from forms which were part of an articulated Lithistud skeleton. In the deeper parts of the type specimen, and in the second specimen of M. plumosus, where
portions of articulated skeleton persist, the monaxon spicules are only few in number, but the latter become abundant where the desmas are few in number or absent.

The specimen (Fig. 7) encrusts Pachastrella 1sorrhopa Kpk, and in its complete state (for part of it has been cut off and retained by Dr. Gilchrist) it probably formed a circular patch about 5 cm . in diameter, 66 cm . thick in the centre, and sloping down to a thin rounded margin.

A second specimen (Fig. 6) of what appears to me to belong to the same species, and which I name var. tubulatus, presents in its mode of growth certain remarkable features which seem to be due to adaptation.

In a deep fissure in a specimen of Pachastrella isoriopa there were two white tubes, 2.3 cm . in length and 2 mm . in diameter. On cutting into the $P_{\text {Pachastrella the tubes were seen }}$ to emerge from an irregularly shaped nodule about 25 mm . in diameter embedded in the sponge, and only distinguished from the rest of the Pachasticlla by a slight difference in shade.

The oscular tubes are composed of two layers, an inner formed of fan-shaped bundles of oxeas, arranged spirally and obliquely upwards, and an outer layer formed of a felt work of oxeas.

The nodule is formed of bundles of oxeas and styles and of patches of monocrepid clesmas of nearly the same character of those of the above described type specimen; the oxeas and styles were usually slightly larger, viz., about 900μ, and the desmas thicker and with larger articular surfaces.

Although the body of the Lithistid is completely surrounded and, to all appearances, incorporated, yet under the microscope the thin line of the dermal membrane of the Pachastrella can be made out.

Carter points out (Ann. Mag. N. H. i876 (\dagger), xviii., p. f^{10}) that it is a chanacteristic of Pachastrella to incorporate any objects with which it comes in contact. In the case of the second specimen of M. plumosus, the oscular tubes appear to have arisen in response to the needs of the sponge, so nearly engulfed by the Pachastrella on which it grew.

The inclusion of Monanthus in the family Desmanthider (see Mém. Soc. Zool France, 1898, xi., p. 23i) renders necessary a slight en'argement of Topsent's definition, viz.: to "mégasclères monactinaux," to add "ou diactinaux."

Localities: Both the typical form and var. tubulatus, encrusting or invested by Pachastrella isorrhopa, from the Natal Coast (Cone Point bearing N.W. $\frac{1}{2}$ W., distant 4 miles) depth, 34 fathoms; bottom, broken shells. The typical form also from E. London Coast (lat. $33^{\circ} 6^{\prime} 30^{\prime} \mathrm{S}$., long. 28° it E.) depth, 85 fathoms, encrusting Placosponsia labyrinthica.

Triptolemus incertus, sp. n.

Plate iv., figs. 4 and $4 \mathrm{a}-\mathrm{f}$.
Description.-The sponge burrows in the canals of the dead skeleton of a specmen of Iiscodermia natalensis mihi. A section of the Discodermia (Fig. 4, between the crosses) shows the larger incurrent and excurrent canals more or less filled up with centrotriænes of all sizes. The only other spicules proper to this species of Triptolemus are small curved, smooth microxea and very minute metasters, the latter being rare.

Spicules. Megascleres.-Centrotrianes of various sizes, the cladi being simple or branched one, two, or three times, usually dichotomously, but sometimes into three branches not in the same plane; frequently the final branches are curved.

Dimensions of a large spicule: rhabdome 3 Io μ, straight, pointed; protocladi 180 , deuterocladi 90.

Microscleres.-Microxea, $100 \times 3 \mu$ to $180 \times+\mu$, fusiform, smooth, curved, sharp-pointed.

Metaster, total length including spines, 10μ.
There are four known species of Traptolemus, viz.: T. intextus Cr., T. parasiticus Cr., T. cladosus Sollas, and the present form. T. intertus has microxeas bearing blunt spines; the centrotriænes are only 180μ, those of T. incertus being 500μ; on the other hand, the amphiasters of Carter's species are 100μ in length.

Sollas's species contains both smooth and trichose microxeas; and the centrotrixenes do not attain to such a size as those of T. incertus.

The total diameter of a large centrotriane of T. cladostrs is only $1+2 \mu$.

The habitats of the four species are as follows:-
Triptolemus intextus Cr. on a Lithistid (Coralli,tes bowerbankii) from St. Vincent, $37+$ fathoms.
T. parasiticus, on a specimen of Carpenteria; hahitat unknown.
T. cladosus Sollas, found with a Lithistid, Coraltistes thomasi, from near the Ki Islands, 1 to fathoms.
T. incertus mihi, Cape Vidal, Natal coast, bearing N.N.E. $\frac{1}{4}$ N., distant $9 \frac{1}{2}$ miles ; depth, 8o-100 fathoms; bottom, rock; burrowing in a Lithistid (Disiodermia natalensis mihi).

[^1]
EXPLANATION OF PLATE.

Fig. 1. Microsclerodernu hirsutum, sp. n. $\frac{1}{3}$ natural size.
ia. Outer or poral surface. Natural size.
ib. Section, $\times 3$.
rc. Two monocrepid desmas, \times roo.
id. Oxea, $\times 100$.
re. Sigmaspires, $\times 700$. (The terminal thickenings do not really exist, and disappear on focussing).

Fig. 2. Hiscodermia natalensis, sp. n. $\frac{2}{3}$ natural size.
2a. Outer or poral surface, \times So.
2b. Inner or oscular, $\times 80$.
2c. Phyllotrixne of poral surface, $\times 100$.
$2 d, c$. Discotriænes of oscular surface, $\times 100$.
$2 f$. Small tyle, $\times \not+20$.
2s. Oxea, $\times 420$.
2h. Style, $\times 420$.
2j. Microxea, $\times 700$.
$2 k$. Microstronsyles, $\times 700$.

Fig. 3. Discodermia natalensis, a much worn specimen. $\frac{2}{3}$ natural size.
$3 a, b$. Tetracrepid desmas, $\times 100$.
3c. Style, \times ioo.
3 d. Microstrongyles, $\times 700$.

Fig. 4. Section of wall of specimen drawn in Fig. 3, slightly enlarged, showing a patch (lighter in shading) of Triptolemus incertus, sp. n., in the midst of the Lithistid skeleton of the Discodermia.

Figs. $4 a-d$. Centrotrixenes, $\times 100$.
4c. Micronea, \times Ioo.
4 f. Metaster, $\times 1625$.

Figs. 5. Lithobactrom fortc. $\frac{1}{2}$ natharal size.
5a. Vertical section showing in-current and ex-curremt canals. Natural size.
5b. Section of skeleton showing canals.
5 5-f. Monocrepid desmas, \times Ioo.
5s. Amphityle, $x+20$.

Fig. 6. Monamthas flamosus in Pachastrella. viar. tubulthos. $\frac{0}{3}$ natural size.
Gar. Section of the same. $\frac{2}{3}$ 1ataral size.
6b. Part of an oscular tube, slightly magnified.
6c. Monocrepid desma, $\times 100$.
6d. Oxea, $\times 100$.
6c. Style, $\times 100$.

Fis. 7. Monanthas plamosus on Pachastrella, sp. n. $\frac{2}{3}$ natural slze.
7a. Vertical section. $\frac{2}{3}$ natural size。
7h. (At lower right corner of plate) a slencler oxeat from the dermal membrane, $\times 100$ (very probably foreign).*

* Note. The fact that the variety is designated as fig. 6 and the type as fig 7 , while only the spicules of the var. are figured, is due to the discovery of a second specimen of the "type" leading to an alteration of the author's views after the plate had heen printed off.

P nithordelet.

[^0]: * 入itis stone. далтон club.

[^1]: Note on Tililla casula (Carter).
 Dr. Gilchrist writes to me: "We now have in the tanks of our Marine Station living specimens of the peculiar hemispherical sponge with flat under surface (Tcfilla casula, Carter). This form seems to be an adaptation to prevent sinking into the sand, as the animal in the tank remained steadily on the surface of the sand on which it was placed."

 A briel description with higures of a specimen of this species sent to the Museum by Dr. Gilchrist was given in the first part of "Descriptions of South African Sponges." The circular flat under surface of the hemisphere had a satiny smonthness, and was surrounded by a fringe of spicules (oxeas and protrixenes). Some species of Tetilla (T. polyara, T. euplocamus) are spherical or ellipsoidal and provided with a tuft of anchoring spicules; others, again, are spherical and free or hemispherical and fixed.

