tiaux, etc. (1). Favorisé par la prédisposition névropathique, c'est quelquefois une manifestation de l'hystérie; on peut aussi le voir figurer dans l'aura épilétique (2).

L'éternuement, dit sympathique, provoqué par les excitations lumineuses, est considéré comme réflexe simple; on admet que les nerfs ciliaires venus du trijumeau, comme les nerfs qui donnent la sensibilité générale à la muqueuse nasale, sont la voie centripète de ce réflexe.

Je suis très sujet à cet éternuement par excitation lumineuse, et il m'a para que c'est un phénomène moins simple qu'on ne le croit généralement. J'ai été déterminé à l'expérimentation par l'observation de quelques circonstances qui, je pense, ne sont pas exclusivement personnelles:

1° Cet éternuement se produit le plus souvent lorsque la muqueuse nasale est sèche, car je sécheresse se produit dans des conditions physiologiques ou au début du coriza.

2° L'éternuement se produit souvent un temps considérable après l'excitation lumineuse. Si on en est marche, on peut compter vo ou même plusieurs seconds entre l'excitation et le mouvement réflexe; il s'agit donc de seconds, c'est-à-dire d'un temps beaucoup plus long que celui qu'exige un réflexe ordinaire.

3° Enfin souvent, entre l'excitation lumineuse et l'éternuement, on a le temps de percevoir un chatouillement nasal.

Ces trois circonstances semblent indiquer que, dans l'éternuement soi-disant par excitation lumineuse, le processus physiologique le plus ordinaire, c'est-à-dire l'irritation de la muqueuse nasale, joue un rôle important. J'ai pensé que si elle pouvait être la conséquence d'une fixation réflexe de la muqueuse nasale, comme il s'en produit à la suite d'irritations diazomées comme celles des organes génitaux par exemple, la conjonctive respiratoire pouvait être aussi provoquée par l'arrivée dans les fosses nasales d'une certaine quantité de liquide lacrymal.

Étant pourvu d'un coriza au début, qui me mettait dans des conditions favorables à la production du réflexe, je me suis exposé à la lumière du soleil, après avoir lué en dehors les quatre points lacrymaux à l'aide de serres fines, j'ai vu que l'éternuement ne se produisait pas: les yeux étaient baignés de larmes. Peu de temps après l'enlevement des serres fines, il se produit un chatouillement dans les narines, puis l'éternuement; l'excitation lumineuse avait cessé avant l'enlevement des serres fines. L'expérience peut être reproduite quand, avec le même résultat, la muqueuse nasale a repris sa sécheresse; dans les mêmes conditions,

(1) Spring. Symptomatologie, t. 1, p. 293.
(2) Ch. Féré. Les éternuements névropathiques, Progrès médical, 1885, 3e série, t. 1, p. 92; Les épilepsies et les épileptiques, 1890, p. 65.

l'éternuement se produit si les points lacrymaux sont laissés dans leur position physiologique.

Cette expérience semble bien montrer que, dans certains cas au moins, l'éternuement provoqué par les excitations lumineuses est le résultat d'une double action réflexe: 1° sécrétion lacrymale provoquée par l'excitation locale; 2° éternuement provoqué par l'écoulement des larmes dans les cavités nasales.

Note préliminaire sur les cercums, sur les glandes intestinales et sur une nouvelle glande des crustacés décapodes,

par M. Michel Costes.

Les appendices du tube digestif des Crustacés désignés sous le nom de cercums pyloriques et de cercums rectal sont des dépendances de l'intestin moyen. Les cercums pyloriques semblent déboucher dans la région dor-sale du pylor entre les pièces mesopyloriques postérieures et la pièce uropylorique; en réalité, ils suivent la direction du repli uropylorique et débouchent presque à la face inférieure de l'intestin entre la pièce pteropylorique postérieure et la base de la valve pylorique dorsale, en arrière du canal hémial.

Le cercum rectal débouche à l'extrémité postérieure de l'intestin moyen juste en avant du renflement duodéno-rectal. Ces deux sortes de cercums ont une structure histologique très analogue à celle de l'intestin moyen.

Cercums pyloriques. Ils n'existent pas ou du moins sont à peine indiqués chez le Pagyrastis maculatus, Pataloon vulgaris, Uronon cataphractus, Galathæa striox, Galathæa squamifera, Pseudoæus cutus.

On trouve chez le Pulmarius vulgaris, Arcus urus, un asse fort renflement médian. Ce renflement est isolé et s'étend sur les côtés dans la Genre litoralis. G. delphora, G. stellata, Axius styrhyneus, Homarus vulgaris, Neprops norvegicus, qui sont insensiblement passés à la Callinassa subterranea. Celle-ci présente deux poches allongées appliquées sur les parois latérales de l'estomac jusqu'à la hauteur de la pièce subdéntaire.

Chez le Maja squinado, Pisa tetrodon, P. Gibbi, Sminarochus longirostris, Perimela denticulata, Eriphia spinifrons, etc., les cercums de longueur moyenne s'endorment sur les parois latérales de l'estomac. Chez le Pachygrapsus mororacitus, Eupagurus Bernhardus, E. Prideauxii, Pagurus stritatus, ils s'avancent jusqu'à l'oesophage et se recourbent en arrière sous l'estomac.

Les cercums pyloriques sont très longs, enroulés au-dessus de la région
Les acini sont placés : 1° soit dans les replis de l’intestin terminal, en dedans de la zone circulaire des muscles transversaux (Eupagurus Bernhardus, E. Pridiauaxii, E. Angustius, Pagurusculus maculatus, Maja squinado, Pisa, etc.); 2° soit en dedans et en dehors de cette zone : Portunus puber, P. depurator, Carcinus marus, etc.

3° Soit entièrement en dehors : Honarus vulgaris, Xantho florida, X. rivulosa, Callianassa subterranea, Porecellosa platycheles, Gehia deltura, G. littoralis, G. stellata, etc.

En général, les acini ne se trouvent pas au-delà du renflement. Cependant certaines espèces en présentent quelques-uns dans toute la longueur des replis de l’intestin terminal : Eupagurus Bernhardus, E. Pridiauaxii, Carcinus marus, etc. Chez les Paguristes maculatus, ils en sont entièrement remplis.

Chez le Palmarus vulgaris, on trouve quelques acini disséminés dans l’intestin ; mais ils sont plus abondants près de l’anus.

L’Honarus vulgaris, qui en dehors du renflement duodéno-rectal ne présente pas de glandes dans l’intestin terminal, en montre au grand nombre près de l’anus.

La Galatea squamissiera et la Porecellosa platycheles, qui n’ont pas d’acini dans l’intestin, en ont un grand nombre près de l’anus.

Enfin le genre Gehia (G. deltura, G. littoralis, G. stellata) n’a pas d’acini dans le renflement duodéno-rectal, mais présente une énorme glande anale qui occupe tout le dernier segment de l’abdomen et le telson. Cette glande, visible par transparence à la face inférieure, se compose de 5 lobes, reçoit de nombreuses ramifications de l’artère dorsale de l’abdomen et plusieurs nerfs des deux derniers ganglions abdominaux. On ne trouve aucune trace de cette glande ni chez l’Azizus virilynchus, ni chez la Callianassa subterranea.

Les glandes intestinales sont formées par des acini sphériques composés de 10 à 20 cellules coniques avec un gros noyau ovale vers la périphérie. Leur dimension varie suivant les espèces de 50 à 80 μ. Chaque acine est enveloppé d’une membrane endothéliale et a un canal excréteur propre très fin (1 à 2 μ) qui débouche directement dans l’intestin. J’ai pu les injeter.

Ces acini sont de deux sortes, faciles à distinguer par leur taille : les cellules des plus gros ont un protoplasma clair très peu granuleux ; ils ne se colorent que faiblement par les réactifs. Les cellules des plus petits ont un protoplasma très granuleux et se colorent fortement par le vert de méthyle, l’hématoxyline, le carmin à l’alun, etc.

Je dois rappeler ici des glandes intestinales, une glande qui, je crois, n’est jamais signalée et que j’ai trouvée chez le Maja squinado, M. serrulosa, Pisa Gisii, P. tetraodon, Stenochymus longirostris, Xantho florida, X. rivulosa, Platycarcinus pagurus, Carcinus marus, etc., mais que je n’ai pu découvrir chez aucun Macroure.
Chez le Maja squinado, cette glande, très transparente, est située en arrière de la selle turcique antérieure, entre les apodèmes correspondant aux trois paires de pattes-mâchoires et par conséquent au sommet du plaçon sternal. Son volume dépasse 4 µ. Acini de deux sortes, disposition et forme des cellules, canaux excréteurs, tout est analoge aux glandes intestinales (les dimensions des acini sont quatrées à cinq fois plus considérables). Mais ici les cellules sont entièrement remplies par un grand nombre de petits globules sphériques (10 à 13 µ), peu réfringents, empilés sans ordre les uns sur les autres. Le contenu des globules est parfaitement homogène; mais sous l'influence de certains réactifs il se divise en très petites sphérules (alcool, acides nitrique, picroïque, sulfate de bichromate, eau, bichlorure de mercure, acétonique, potasse, chlorure de sodium à 1, 2, 3, 7, 8 p. 100, etc.).

Le sang de l'animal, l'eau de mer et les solutions salines qui s'en rapprochent, 3, 4, et même 5 p. 100, les conservent assez bien pendant vingt-quatre heures. L'acide osmique à 1 p. 100, agissant pendant deux ou trois secondes, est le seul réactif par lequel j'ai réussi à les fixer. Mais si on laisse prolonger son action, le contenu des globules se divise rapidement en petites sphérules, qui ne naissent pas, même après vingt-quatre heures.

L'action de l'eau distillée, de l'acide osmique ou des solutions aqueuses à 5 et 6 p. 100 de chlorure de sodium, permettent de constater l'existence d'une membrane excessivement ténue.

En outre, dans ces solutions salines, les globules présentent des changements successifs de forme, presque de mouvements.

Les canaux excréteurs débouchent à l'extérieur, soit directement sur la carène sterno-basale (Xylopterus Platyxerus); soit dans un canal qui aboutit au fond d'une échancrure située en avant de l'articulation de la première patte-mâchoire (Maja, Pisa).

Ceci est le résumé très succinct d'une partie de mes recherches sur ces divers sujets. Dans un très prochain Mémoire, dont tous les matériaux sont rassemblés, je donnerai de nombreux détails sur les rapports, la structure et le développement de ces organes et sur quelques points de leur physiologie.

---

SÉANCE DU 25 OCTOBRE

SUR LA MORPHOLOGIE DE L'ANTENNE CHEZ LES CRUSTACÉS DÉCAPODES (1),

par M. Paul Margial.

(Travail fait au laboratoire de M. le professeur de Lacaze-Duthiers.)

Mes recherches sur les organes excréteurs des Décapodes m'ont amené à comparer entre elles l'antenne du type Macroure et celle du type Brachyure, et à découvrir ainsi certains faits intéressant au point de vue de la composition élémentaire de la région céphalique chez ces animaux.

Je rappellerai d'abord la composition de l'antenne d'un Macroure, de l'Ecrevisse par exemple; elle présente une partie basilaire massive formée de cinq articles, et un long fouet multi-articulé; les deux premiers articles (coxocérite et basiocérite) représentent dans leur ensemble le prothorax de l'antenne; le premier d'entre eux, le coxocérite, porte le tubercule excréteur; le second porte une écaillce (scaphocérite) qui représente l'exopodite. Tout le reste de l'antenne, formé par les trois articles suivants (ischiocérite, métronocérite, carpocérite) et par le long fouet multiarticulé, représente l'endopodite.

Chez le Brachyure, l'antenne parait différer profondément du type précédent. Chez le Maja Squinado, que nous prendrons comme type, on ne distingue que deux articles basilaire mobiles et un fouet multiarticulé. Quant aux autres articles, les auteurs s'accordent pour dire qu'ils se sont soudés entre eux, d'une part, au rostre et au céphalothorax, d'autre part, de façon à former ce large pont qui passe au-dessus du pédicule oculaire et qui sépare la loge de l'antenne de l'orbite; mais ils ne précisent ni la nature ni le nombre de ces articles.

Il résulte de mes observations que ce large pont ressort seulement de la soudure de deux articles: le second et le troisième (basiocérite et ischiocérite). Le premier, ou coxocérite, ne s'est soudu ni au céphalothorax ni à l'article suivant; cerné par le basiocérite qui s'est soudu en dehors et en dedans de lui au céphalothorax, il est resté indépendant et mobile et a formé l'opercule de l'appareil excréteur. Dans une note antérieure, j'ai décrit les rapports de cet opercule avec l'appareil excréteur, et la façon dont il se souduait comme un clapet mobile autour d'une charnière, lorsque l'animal évacuait au dehors le contenu de sa vessie.

Je ne puis donner ici qu'un court résumé des raisons qui m'ont conduit

(1) Je renvoie le lecteur aux dessins de Milne-Edwards dans le Règne Animal; l'auteur y figure généralement d'une façon fort exacte la base de l'antenne, et ce qu'il appelle le tubercule auditif (tubercule excréteur des Macroures; coxocérite des Brachyure.)