## DESCRIPTIONS

OF

# SOUTH AFRICAN SPONGES 

BY

R. KIRKPA'TRICK, F.Z.S., BRITISH MUSEUM (NATURAL HISTORY).



Dr. J. D. F. Gilchrist, Government Biologist, of Cape Town, has recently sent to the British Museum a collection of Sponges dredged by him off the coasts of Cape Colony and Natal from depths ranging from 13 to 300 fathoms. Most of the specimens were preserved in formalin, but some were dried. All the wet specimens have been transferred to alcohol. By the kind permission of Professor E. Ray Lankester, their description has been entrusted to me. This collection contains several new and interesting forms, and this is not surprising, seeing how little hias hitherto been done towards working out the Sponge Fauna of South Africa.
In the present paper the Hexactinellida and Tetractinellida Choristida are described.
Below is a list of species :-

## HEXACTINELLIDA.

## Family Rossellidæ.

1. Rhabdocalyptus plumodigitatus, Kirkpatrick.
2. Crateromorpha lankesteri, sp. n.
species [10], p. IO5, of this genus the autogastralia are hexactine or hexactine and pentactine. In a species of a closely allied genus, Staurocalyptus pleorhaphides, Ijima [3], p. 58, both the dernal and gastral membranes are supported by spinous diactines.

Locality-LLarge specimen, Lion's Head N. $73^{\circ}$ E. distant 28 miles, depth 140 fathoms; small specimen, Lion's Head N. $63^{\circ}$ E. distant 34 miles, depth 154 fathoms. Both specimens obtained by shrimp trawl.

Sub-family Rossellinæ, F. E. Schulze [8], p. 348.
Genus Crateromorpha (Gray), Carter.
Crateromorpha lankesteri, sp. n.
Plate I, figs. 1-11.
Sponge trumpet-shaped, with a well-developed curved stalk expanding into a wide shallow trumpet-like expansion or cup facing laterally, the central axis of the cup continuing the curve of the stalk. Colour pale yellow, and the texture of the cup-wall like that of loose felt. Dermal surface of the cup even, and covered with a fine lace-like reticulum. Gastral surface covered with a continuous mesh-work, papillated at the base of the cup, and roofing over the efferent canals and stalk canals. Edge of cup, thin, sharp-cut, without a fringe of spicules.

Stalk curved, sub-cylindrical, diminishing slightly from below upwards; compressed laterally below, and from before backwards at the upper end, where it expands funnel-like into the cup. Surface covered with a yellow fluff. Texture firm, felt-like, slightly compressible. With four or more anastomosing longitudinal canals in the centre.

Skeleton. The bulk of the skeleton is composed of a network of bundles of diacts, with medium-sized and large hexacts interspersed; the intermedia consist solely of oxyhexasters. The lacelike dermal membrane, which is supported by pentacts, covers! a hypodermal network formed of bundles of diacts. Beneath b gastral layer of pentacts is a hypogastral network of diacts, the strands of which are covered with small hexacts. The vertical ray of the dermal and gastral pentacts projects into the parenchyma. The stalk is formed of longitudinal bundles of diacts supported here and there by very large solitary diacts, and of medium-sized, usually solitary, diacts arranged in horizontal plane and frequently radiating.

The fluff which covers the surface is chiefly composed of pentacts. Small hexacts line the stalk canals.

Spicules. Parenchymal diacts (Figs. 5, 6), I360 to $3100 \times 5$ to $10 \mu$, smooth, but with roughened rounded ends, and occasion ally with two or four knobs with aborted axial canals; triacts and tetracts of the same character as the diacts, occurring rarely. Large diacts of stalk (Fig. 7) $10 \mathrm{~mm} . \times .128 \mathrm{~mm}$.

Parenchymal hexacts of various sizes, the largest with conical rays each $620 \mu$ in length, and with centrum $32 \mu$ in diameter.

Autodermal pentacts with rough truncate rays each $285 \mu$ in length, and without a distal knob. The surface pentacts of the stalk (Fig. 9) with long smooth tapering tangentials each 220 to $520 \mu$ in length, the vertical ray being sharp-pointed and from $50-100 \mu$ in length.

Autogastral pentacts (Fig. 8) mostly resembling autodermal pentacts, but some in the floor of the cup having smooth tapering rays like those of the stalk pentacts.

Hypogastral hexacts (Fig. 10) and the slightly smaller hexacts of the stalk canals regular, with roughened blunt-pointed rays $4^{-}$ $110 \mu$ in length, with a small centrum.

Intermedia, oxyhexasters (Fig. II) $62 \mu$ in diameter, the almost aborted primary rays giving rise to two (usually) or three secondary rays with roughened surface.

The species is named after Professor E. Ray Lankester.
Locality.-Three specimens were obtained by shrimp trawl from a depth of 250 to 300 fathoms, East London N.W. $\frac{1}{2}$ N. distant 18 miles. Bottom-broken shells, hard ground.

Of the three specimens two are dried and the third and smallest is preserved in formalin. The largest (A) is 3 I cm . in height, the diameter at the rim being 22 cm ., and the depth of the cup I I cml. : the length of the stem is 22 cm ., the diameter below being $3 \times 6 \mathrm{~cm}$, and at the upper end $4 \times 3 \mathrm{~cm}$. : the system of canals in the centre of the stem occupies, near the lower end, 'a diameter of 0.6 cm .
The dimensions in centimetres of specimens B and C are as follows:-

|  | B. | C. |
| :---: | :---: | :---: |
| Height | 20 | 12 |
| Diameter of rim | 15 | 7 |
| Length of stalk | 10 | 6 |

Specimen B has a double stem, a long slit-like fenestra extending nearly the whole length. Specimen A was the best preserved, but even here, the dermal membrane and to a still greater extent the autogastral layer had almost disappeared.

Trawls and dredges are not quite suitable implements for obtaining delicate Hexactinellid Sponges, much better success being obtained by the "long-line" method advocated by Ijima, [47, and [5], p. $\mathbf{1} 6$.
The specimens appear to have been torn up from their points of attachment : the lower ends are clear of any foreign matter.

The new species differs from others of the genus not only in its remarkable shape, but also in the absence of discohexasters. These spicules occur in all other species of Cratcromorpha, and in all the genera of Rosscllinae except Bathydorus. It does not seem necessary, however, to establish a new genus to include the new species.
Owing to the hypogastral membrane of C. lankestori being continuous, the inner surface of the cup-wall does not present the cavernous aspect usually seen in species of Cratcronorpha.
The hard-felt-like texture of the stalk partly arises from the absence of synapticulæ, which, in some species, C. meyeri for instance, weld the lower end of the stalk into a compact mass of stony hardness.*

## Family Tetillidæ.

Genus Spongocardium, gen. nov.
Tetillidue free, ellipsoidal, with a poral vestibule at one end and an oscular cloaca at or near tie other end of the long diameter of the upper surface.

Spongocardium gilchristi, sp. n.
Plate II, figs. 1, 1A, and Plate III, fig. 1.
Sponge with the upper surface somewhat flattened, and the lower surface deeply convex.

Poral vestibule usually with a spicular fringe, and oscular cloaca usually with a sharp cut edge without fringe. Surface of poral vestibule smooth and uniform; surface of oscular cloaca reticulate, with oscules ( $.25-.5 \mathrm{~mm}$. in diameter) in the meshes of the network. Poral vestibule always much deeper than the oscular cloaca. Colour pale buff, the interior being lighter. Surface level but rough, forming a firm cortex, apparently devoid of pores. Beneath the semi-translucent surface a network of white strands visible.
Skeleton mainly formed of bundles of triænes and oxea radiating from centre to periphery, and embracing the poral and oscular depressions; skeletal cortex formed of the cladal ends of the triænes and of tangentially arranged oxea, the clear spaces visible through the surface being partly filled in by the ends of the radiating bundles. In the walls of the poral and oscular depressions, slender tufts of trichodal prodiænes spreading out in fan-like manner as they approach the surface.
Spicules. Megascleres.-Oxea (Fig. ra). 8 to to mm. $\times .08$ to . I mm.. slightly curved, sharp-pointed. Tylotes $3100 \times 21 \mu$,

[^0]smooth, curved, with long oval head $45 \mu$ in breadth not uncommon at the surface. Small oxea (Fig. Ib) $1900 \times 30 \mu$.

Anatriænes (Figs. Ig, $\mathrm{g}^{\prime}$ ), rhabdome $9.4 \mathrm{~mm} . \times .02$ mm., with fine hair-like termnnations; length of cladus $75 \mu$, chorda IIO $\mu$.

Protriænes (Figs. Ic, c') with short stout cladi; rhabciome 5300 X 3 I $\mu$; length of cladus $78 \mu$, chorda $70 \mu$ 。

Protriænes (Fig. Ih) trichodal, rhabdome $6 y 0 \times 2 \mu$; cladi unequal, longest cladus $45 \mu$.
'rodiænes (Figs. Ik, $k^{\prime}$ ) trichodal, abundant in poral and oscular areas with dimensions equal to those of trichodal protriænes ; cladi about equal.

Orthotriænes (Fig. Id), rhabdome $4900 \times 35 \mu$; length of cladi $340 \mu$, slightly curved. Fig. Id' represents a plagiotriæne, whichi only occurs rarely.

Orthodiænes (Fig. Ie), abundant, and orthomonænes (Fig. If) with dimensions similar to those of the orthotriænes.

Microscleres.-Sigmaspires of two kinds, viz., a serpentine variety (Fig. Il) abundant, 35 to $45 \mu$ in length, with long open coils, and a smaller C-and-S shaped variety (Fig. im) I6 to $20 \mu$ in length.

Locality.-Cape Natal W. by N. ${ }_{4}^{3}$ N., 11 miles; depth 185 200 fathoms. Bottom-sand and mud; obtained by shrimp trawl.

The new species is represented by five specimens, the larges of which is $8 \times 6.5 \mathrm{~cm}$. in horizontal plane, by 5 cm . in height, and the smallest $3.5 \times 2.6 \mathrm{~cm}$. in horizontal plane by 2.8 cm . in height. Of the five specimens, four are provided with a fringe round the poral vestibule, but only one with a well-marked fringe round the oscule, a poral fringe being also present in the latter instance. The nearest allied genus is Cinachyra of Sollas, with its numerous poral and oscular depressions. C. barbata Sollas [II ], p. 23, pls. iii. and xxxix., from Kerguelen is provided with a dense root-tuft and with a cortical layer of radially arranged oxea. C. voeltzkowi Lendenfeld [7], p. IOI, pl. ix., fig. 35-53, from Zanzibar is a spherical free sponge with mumerous oscular cloacæ and with the pores generally distributed over the surface; again, Tctilla hirsuta Dendy [2], p. 75 , from the Gulf of Manaar has numerous poral and oscular pits. The chief character of the new genus is the localisation of the poral and excurrent openings each in one well-defined region. The pores occupy, in the floor of the vestibule, oval spaces bounded by the tufts of trichodal prodirnes, and open into the distal ends of sphinctrate chones, which merge below into sub-cortical spaces, whence ringed in-current canals proceed. The oscular cloaca presents small circular sphictrate excurrent openings one in each mesh of the superficial network formed by strands of soft tissue. The generic name is suggested by that of the Echinoderm genus Echinodcardium, in which the shape of the shell with its mouth and madreporite resembles that of the sponge. The species is named after Dr. Gilchrist.

## Genus Tetilla. <br> Tetilla bonaventura, sp. n.

Plates II and III, fig. 2.
Sponge shaped like a mushroom with a thick stem. The domeshaped upper surface finely hispid, with several small oscules 1.5 1 mm . in diameter. Colour a dirty greenish grey.

Spicules. Megascleres.-Oxea (Fig. 2a) $4200 \times 48 \mu$, almost straight, slightly aniso-actinate, sharp-pointed. Smaller curved oxea and styles (Figs. 2b, b'), $1085 \times 3$ I $\mu$.

Anatriænes (Fig. 2c, c'), rare, rhabdome $8000 \times 7 \mu$, enlarging up to $12.5 \mu$ in width at junction with cladome; length of cladu $60 \mu$, chorda $90 \mu$.

Anadiænes (Fig. 2d), abundant, and anamonænes (rare), of the same dimensions as the anatriænes, from which they have been derived.

Protriænes (Fig. 2f, f') $2720 \times 12.5 \mu$ with terminations of extreme tenuity; length of cladus $100 \mu$, chorda $60 \mu_{0}$

Prodiænes (Fig. 2g) of approximately similar dimensions to protriænes figured in fig. 2 f .
'Irichodal protriænes (Fig. 2h), rhabdome $190 \mu$, one cladus $25 \mu$, the other two each $8 \mu$ in length.
Microscleres. Sigmaspires (Fig. 2k), II.5 .
Locality-False Bay, 22 fathoms.
The single specimen is 4 cm . in height and 5 cm . in diameter in horizontal plane. The new species resembles $T$. coronida Sollas, and $T$. pedifera Sollas in having anamonænes, but $T$. pedifera has no microscleres: the anamonæne of $T$. coronida probably results from the reduction of a protriæne, but in the present species from a reduced anatriæne, the shape of the anamonæne being very different in the two cases.

Another characteristic feature of the new specics is the occurrence of the anadirnes.

## Tetilla casula, Carter.

Plate II, figs. 3, 3s. 1871, Tethya casula, Carter [1], p. 43. 1888, Tetilla casula, Sollas [11], p. 99, pl. IV., figs. 1-9.
The one example of this species occurring in the present collection presents a very different appearance from the type specimen figured by Carter [I], pl. iv. fig. I. The former has the shape of a solid sphere segment or low circular dome with a flat under surface. It seemed, at first sight, as though the specimen were a piece sliced off from a spherical sponge. Dr. Gilchrist remembered, however, the sponge being brought to the surface in the condition in which he sent it. The flat base is 5 cm . in diameter. and the height 1.7 cm . The convex surface, over the lower half of
the slope, presents tults of spicules (oxea and protrianes) which form a fringe round the circular edge. The surface is smooth and even, excepting where fissures have formed, in one of which the excurrent canals opens. The colour is greenish grey. On section the nucleus, whence the skeletal fibres radiate, is seen to be on the vertical axis passing from base to apex, and at the junction of the middle and lower third.

The spiculation is identical with that of the type specimen.
The under surface of the new specimen is smooth and free from foreign bodies, but the same region in the type is encrusted with sand particles.

The remarkable shape of the type specimen evidently results from contraction due to drying.

Locality.-False Bay, S. Africa, 22 fathoms; the type specimen came from Port Elizabeth.

## Family Pachastrellidæ.

Gønus Pachastrella, Schmidt.
Pachastrella caliculata, sp. n.
Plates II and III, fig. 4.
Sponge caliculate with thick rounded rim and hard thick walls. Outer poral surface smooth, here and there nodulated; inner oscular surface finely cribriform over nearly the whole area, oscules about .75 mm . Colour pale buff.

Skeleton mainly composed of densely-packed calthrops of various sizes, with bundles of oxea arranged at right angles to the sponge surfaces; microstrongyles forming a dense surface layer and distributed through the body of the sponge.

Spicules. Megascleres.-Oxea (Fig. 4a) $4800 \times 45 \mu_{\text {, straight }}$ or curved, with sharp or rounded points.

Calthrops of many sizes (Fig. 4b-f), the largest with thick rays, each $1085 \times 240 \mu$, ends pointed, but often obtuse and contorted; some with a fourth ray longer than the other three.

Microscleres.-Microstrongyles (Fig. 4 g ) $12 \times 5.5 \mu$, prolateellipsoid, with granulated surface.

Microrhabds (Fig. 4h) $25 \times 3 \mu$, curved, closely and finely spined, not centro-tylote.

Amphiasters (Fig. 4k) II $\times$ II $\mu$, including spines, with 4-5 truncated rays with granular surface.

Locality.-Durnford Point, Natal, N.W. $\frac{3}{4}$ W., distant 12 miles; depth 90 fathoms. Bottom-broken shells.

The solitary specimen, which is shaped somewhat like a sitzbath without the bottom, has been cut off sharp from its attachment.

The greatest height is 10 cm ; the diameter of the cut base 10 cm . ; the thickness of the wall at the cut base 3 cm ., and of the edge .75 cm .

The surface is encrusted with several other sponges, and infested with embedded barnacles opening at the surface.
the most characteristic feature of the new species is the caliculate shape. The spiculation closely resembles that of Pachastrella monilifcra Schmidt, but the megascleres of the former are considerably larger than those of the latter. P. abyssi O.S. is here regarded as synonym of $P$. monilifera, O.S., as pointed out by topsent [12], p. 380 .

> Pachastrella isorrinopa, sp. n.

## Plates II and III, fig. 5.

Sponge massive; pores and oscules not apparent ; colour brown; arrangement of skeleton as in preccding species.
Spicules. Megascleres.-Oxea, $3100 \times 31$ ", straight or curved.
Amphityles (Fig. 5a) $480 \times 10 \mu$, smooth, curved; head 25 $\times$ 10.5, long oval; neck $5 \mu$; common in one specimen (A), rare in a second specimen (B).
Strongyles (Fig. 5b) $330 \times 5.5 \mu$, smooth, straight; not found in $A$, not uncommon in $B$.
Smooth curved oxea (? foreign) $270 \times 9.5$.
Calthrops, largest with each ray $590 \times 62 \mu$.
Microscleres.-Microstrongyles, $12 \times 5.5 \mu$, prolate-ellipsoid, with granular surface.
Microrhabds, 11-33 $\mu$ in length by $2.7 \mu^{\mu}$ in breadth, curved and crooked, closely and finely spined, not centro-tylote.
Amphiasters in $\times$ if $\mu$, with $3-5$ rough truncate rays. (There is no room in the Plate for figures of all the spicules).
Locality--Cone Point, Natal, N.IW. $\frac{1}{2}$ W., distant 4 miles; depth 34 fathoms. Bottom-broken shells.

The new species is represented by two specimens. Specimen A (the type), of triangular elevation, is 7 cm . in width, 2.5 cm . in thickness and 5 cm . in height ; the colour is dark brown. Specimen $B$ forms a flattened cake-like mass, $8 \times 5 \mathrm{~cm}$. in area, and 4 cm . in height, the colour being paler than that of specimen A . Both specimens are infested with barnacle-shells, which permeate the whole mass of specimen $B$.
This species differs but little from the preceding and from $P$. monilifera Schmidt, the chief distinguishing feature being the curious amphityle spicules.
Both the specimens, A and B, are associated with a soft Lithistid, which forms a flat cake-like crust on the upper surface of B. In the case of specimen A, the Lithistid occurs as a nodule deeply sunk in and incorporated with the Pachastrclla, and communicating with the exterior by means of tubular vents passing along a deep fissure in the Pachastrella.

[^1]On section of specimen $A$, the embedded Lithistid appears more vitreous than the surrounding tissues of the Pachastrella.

## Family Stellettidæ.

Stelletta (Astrella) horrens, sp. n.

## Plates II and III, fig. 6.

Sponge vase-shaped with thick rounded rim and thich walls of almost stony hardness. Outer or poral surface and inner or oscular surface bristling with strong protriænes and oxea.
Small cribriform groups of oscules, about I mm. in diameter, distributed over the whole inner surface slightly below the level of the jungle of projecting spicules; each oscule about. 2 mm . in diameter.

Colour of outer surface purplish black, of inner, rufous brown.
skeleton mainly formed of radiating bundles of protriænes and oxea. Pycnasters forming a layer in the ectosome, and distributed through the clioanosome.
spicules. Megascleres.-Oxea (Fig. 6a) $3900 \times 80 \mu$.
Protriænes (Fig. 6b): rhabdome $3810 \times 140$ "; length of cladus 440 to 620 : chorda varying from 200 " to $0 \mu$, the cladi sharp-pointed, claw-like. occasionally almost meeting.

Microscleres. Pycnasters (Fig. 6, c, d) $6.5 \mu$ in diameter with short pyramidal spines; rarely the pyonasters becoming asters $12 \mu$ in diameter, by lengthening of the spines.

Locality.-Durnford Point. Natal, N.IV. $\frac{3}{4}$ W., distant 12 miles; depth 90 fathoms. Bottom-broken shells.

The vase, which has been cut off sharp from its area of attachment, expands upwards from a massive solid base: the cut surface is oval, $6 \times 5 \mathrm{~cm}$. in diameter and shows the skeleton fibres radiating from the centre.

The dimensions of the sponge are as follows:-Height I 5 cm ., diameter of mouth of vase $15 \times 6 \mathrm{~cm}$., thickness of rim 1 cm ., depth of cavity of vase 6.5 cm .

The cladi of the remarkable claw-like protriænes are visible to the naked eye, and their presence renders it advisable to handle the specimen very cautiously.

A massive specimen of a Trachya is firmly attached to one side of the Stcllctla, but has not been shown in the figure of the latter on Plate II.

## INDEX OF LITERATURE．

［1］．Carter，H．J．Description of a new species of Tethya． （Ann．\＆Mag．Nat．Hist．（4）viii．p．99，pl．iv．1871）．
\2〕．Dendy，A．Report on a second collection of Sponges trom the Gulf of Manaar．（Ann．\＆Mag．Nat．Hist．（6）iii．p．73， pls．iii－－v．I889）．
【3〕．Ljima，I．＂Revision of Hexactinellids with Discoctasters， with descriptions of five new species．（Annotationes zoologice Japonenses，vol．i．1897）．
［4］．Ijima，I．Long－lines as zoological collecting apparatus． （Zoological Magazine，Tokyo，vol．viii．）．
［5］．1jima，I．Studies on Hexactinellida I．Euplectellidae． （Journ．Coll．Science，Tokyo，xv．p．16，1901）．
［6］．Kirkpatrick，R．Description of a new Hexactinellid Sponge from S．Africa．（Ann．Mag．Nat．Hist．（7）vii．p．457， pl．viii．190I）．
\7〕．Lendenfeld，R．Spongien von Sansibar．（Abhandl． Senckenbergischen Naturforch．Gesellsch．Bd．xxi．p．93．pls．ix， x． 1899.
［8］．Schulze，F．E．＇Revision des Systemes der Asconemati－ den und Rosselliden，＂Sitzungsb．Akad．Wiss．Berlin， 1897.
［9］．Schulze，F．E．＂Challenger＂Hexactinellida， 1887.
［io］．Schulze，F．E．＂Amerikanische Hexactinelliden nach dem Materiale der Albatross－Expedition，＂ 1899.
［II］．Sollas，W．J．Report on the Tetractinellida coilected by H．M．S．Challenger， 1888.
［12］．Topsent，E．Etude monographique des Spongiaires de France．（Archives de Zoologie expérimentale et générale（3） ii．p．259，pls．xi．－xiv．1894）．

## EXPLANATION OF PLATES.

## Plate I.

Fig. i. Crateromorpla lankesteri, sp. n. $\frac{1}{2}$ nat. size.
Fig. 2. Dermal membrane, $\times 2$.
Fig. 3. Gastral and hypo-gastral layer, $\times 2$.
Fig. 4. Transverse section of stalk of smallest specimen, $X=$
Figs. 5, 6. Parenchymal diacts, $X 140$.
Fig. 7. Large solitary diact of stalk, $\times 140$.
Fig. 8. Gastral pentact, $\times 140$.
Fig. 9. Dermal pentact from stalk, $\times 140$.
Fig. io. Hypogastral hexact, $X$ i4o.
Fig. II. Oxyhexaster, $\times 400$.

## Plate II.

Fig. I. Spongocardium gilchristi, gen et sp. n. Reduced to 尔 nat. size. $a$, poral vestibule; $b$, oscular cloaca.
Fig. in. Vertical section of a smaller specimen. Natural size.
Fig. 2. Tetilla bonaventura, sp. n. Natural size.
Fig. 3. Tetilla casula, Carter. Natural size.
Fig. 3A. The same, in vertical section.
Fig. 4. Pachastrella caliculata, sp. n. Reduced to $\frac{1}{8}$ nat. size.
Fig. 5. Pachastrella isorrhopa, sp. n. $\frac{1}{2}$ nat. size.
Fig. 6. Stelletta horrens, sp. n. $\frac{1}{2}$ nat. size.

## Plate III.

Fig. 1. Spongocardium gilchristi. a. Oxea, $\times 25$.
b. Smaller oxea, $\times 25$.
c. Protriæne, $\times 25 ; c^{\prime}$, head of $c, \times 100$.
d. Orthotriænes; $d^{\prime}$, plagiotriæne, $\times 25$.
e. Two orthodiænes, $\times 25$.
$f$. Orthomonæne, $\times 25$.
$g$. Anatriæne, $\times 25 ; g^{\prime}$, head of same, $\times 100$.
h. Head of trichodal protriæne, $\times 425$.
$k$. Trichodal prodiæne, $\times 100 ; k^{\prime}$, head of $k, \times 425$.
l. Large sigmaspires, $\times 425$.
m. Smaller sigmaspires, $\times 425$.

## 232

rig. 2. Letilla bonaúcutura a. Oxea, $\times 25$.
$b, b^{\prime}$. Smaller oxea and styles, $\times 25$.
c. Anatriæne, $\times 25 ; c^{\prime}$, head of same, $\times 100$.
d. Anadiæne, $X$ Ioo.
e. Anamonæne, $\times$ Ioo.
$f$. Protriæne, $X 25 ; f^{\prime}$, ditto, $\times 100$.
g. Cladome of prodiæne, $X 100$.
h. Trichodal protriæne, $\times 425$.
k. Sigmaspires, $\times 425$.

Fig. 4. Pachastrella caliculata. a. Oxea (half length), $\times 25$.
b. One ray of large calthrops, $\times 25^{\text {. }}$
c, $d, e, f$. Calthrops, $\times 100$.
g. Microstrongyles, $\times 800$.
h. Microrhabds, $\times 880$.
k. Amphiasters, $\times 880$.

Fig. 5. Pachastrella isorrhopa.
a. Amphityle, $X$ roo.
b. Strongyle (in specimen B), $\times 100$.

Fig. 6. Stelletta horrens. a. Oxea, $\times 25$.
b. Protriænes, $\times 25$.
c. Fycnasters, $X 425: d$, the same $\times 880$.

1: Mar. Inv. S.A.
Sponges. PI. I


Mar. Inv. S.A.

P. Highley del et lith.

Mar. Inv. S.A.
Sponges PI. III.


## I N DEX.

## FISHES <br> (Sec also Cataluginc of Fishes recorded from Sunth Africa, pp.97-179).

Achirus, I
Algoa Bay, 4, 11, 12
Ansjovis, 12
antipodum (Engranlis), 12
antiquorum (Hippocampus), II
Archirus capensis, r, 2
Arnoglossus capensis, I
Arnoglossus laterna, I
axillaris (Cacsio), 10
bleekeri (Solea), 1, 2
Brak River, 8
Buffalo Bay, 10
Caesio axillaris, Io
Caesio lunaris, 10
Callionymus costalus, 9
capensis (Achirus), 1,2
capensis (Arnoglossus), I
capensis (Cynoglossus), 1, 4
capensis (Heteromycterus), 2
capensis (Hippocampus), I I
capensis (Plagusia), 4
capensis (Trulla), +
Cape St. Blaize, 9
cepedianus (Lophotes), 13
costatus (Callionymus), 9
cristalus (Lophotes), 13
Cynoglossus, I
Cynoglossus capensis, $1,+$
Dassen Island, 3,4
enchrasicholus (Engraulis), I2
Engraulis antipodum, 12
Engraulis enchrasicholus, 12
Engraulis holodon, 12

False Bay, 2, 4, 10
fiskii (Lophotes), 13
gilchristi (Gobius), \&
Gobius gilchristi, 8
Hetromycteris capensis, 2
Hippocanpus antiquorum, II
Hippocampus capensis, Il
holodon (Engraulis), 12
impar (Pegusa), 2
Kalk Bay, 13
Kinysia, 1 I
laterna (Arnoglossus), I
Lophotes cepedianus, 1.3
Lophotes cristatus, 13
Lophotes fiskii, 1 .
lunaris (Caesio), io
marginata (Synaptura), II
microlep is (Symaptura), 1, 3, 11
Mossel Bay, 8, 13
pectoralis (Synaptura), 1, 3, 1 I
Pegusal impar, 2
Plagusia capensis, +
Solea, I
Solea bleckeri, 1, 2
Solea vulgaris, 4
Synaptura, 1
Synaptura marginata, 1 I
Synaptura microlcpis, $5,3,11$
Symaptura pectoralis, $1,3,11$
Tirulla capensis, +
vulgaris (Solea), 4
Zwartkops River, 12

## CRUSTACEA.

(For names of specimens sec author's index, f. 6.5).

Algoa Bay, 30, 37, 46
Auckland, 55.
Augulhas Bank, 29
Australia, 55, 59
Bird Island, 20
C ape St. Blaize, 32

Chili, 55<br>East London, $5^{1}$<br>False Bay, 22, 26, 32, 03<br>Gordon's Bay, +1<br>Geree Island, 15,5 l<br>Indian Ocean, 55

## Crustacea.-Contimued.

Java, 57, 59
Kalk Bay, 59
Marion Island, 29
Mossel Bay, 15
Natal, 20
New Zealand, 55, 59
Nightingale Island, 29
Patagonia, 29, 61

Rio Janciro, 55
Saldanha Bay, 22
Senegambia, 15,51
Simon's Bay, $\mathbf{I}_{5}, 46,57$
Table Bay, 22, 36, 55
Teneriffe, 57
Zwartkops River, 46

## MOLLUSCA.

Buccinidae, 5, 0
Cancellaria, 6
Cape of Good Hope, 6
Chrysodomus, 5
F'usidate, 5
Fusus norvegicus, 5
gilchristi (Neptuncopsis), 6
Neptunea, 5

Neptunea norvegica, 5
Neptuneopsis, 5
Neptuneopsis gilchristi, 6
norvegica (Neptumea), 5
norvegicus (Fusus), 5
Voluta, 5, 6
Volutidace, 5
Volutopsis, 5

## ALCYONARIA AND HYDROCORALLINAE.

Acrophytum, 75
Acrophytum claviger, 67, 70, 74
albicans (Emnicella), 69
albicans (Gorgonia), 69
albitincta (Melitodes), 8I
Alcyonacea, 70
Alcyonidae, 72
Alcyonium antarcticum, 68, 70, 73
Alcyonium coralloides, $8+$
Alcyonium difitatum, 77, 86
Neyonium pachyclados, 70,72
Algoa Bay, 69, 70, 72, 74, 75, 78, 79, 82
Altopora nobilis, 93
Allopora oculinat, 94
Allopora venusta, 93
antarcticum (Alcyonium), 70, 73
Anthelia capensis, 69, 70
Inthomastus, 74
Australasiae (Veretillum), 89
Briareidae, 78
citpensis (Anthelia), 69, 70
capensis (Euplexaura), 69
capensis (Gorgonia), 67,70,83,84
capensis (Heteroxenia), 67, 70
capensis (Isidella), 69, 86
capensis (Primnoisis), 69, 70, 86
Cape of Good Hope, 79
Cape St. Blaize, 70, 7I, 83

Cavermularia, 68
Cavermularia elegans, 70, 89
Cavermalaria obesa, 70,92
chamaeleon (Muricea), so
claviger (Acrophytum), 67, 70, 74
coralloides (Alcyonium), $8+$
coralloides (Sympodium), $8_{+}$
Cordiceps, 74
crista (Lophogorgia), 69
dichotoma (Isis), 80
dichotoma (Melitodes), 7o, 8o
digitatum (Alcyonium), 77, 86
East London, 70, 73, 77, 87
elegans (Cavernularia), 70, 8o
elegans (Sarcohelemnon), 8'9
elegans (Veretillum), 8o
Elizabethae (Heteroxenia), 71
elongata (Juncella), 70, 85
Esperella, 79
Eunephthya thyrsoidea, 69
Eunicella, 78
Eunicella albicans, 69
Eunicella palma, 69
Ennicella papillosa, $60,70,80$
Euplexatura capensis, 69
flamme: (Gorgonia), 69, 70, 81,83 , $8+, 85$
1lammea (Leptogorgia), 69
False Bay, 69, 70, $7 \mathrm{I}, 80,82,89,93$

## Alcyonaria and Hydrocorallinae.-Coutimued.

gattyiac (Homophyton), 79
gemmace (Juncella), 86
Gorgonace: 70
Gorgonellidae, $\mathrm{K}_{5}$
Gorgonia, 68, 78
Gorgonia albicans, 6 )
Gorgonia capensis, $67,70,83,84$
Gorgonia flammea, $69,70,81,83,8+$, 85
Gorgonia Lütkeni, sis
Gorgonia palma, $\mathrm{S}_{1}, \mathrm{~S}_{2}$
Gorgonia pinnata, ist
Gorsonidae, 81
gracilis (Stylaster), 03
sustavianum (Halisceptrum), si
Halisceptrom $\underline{q} u s t a v i a n u m, ~ 8 s$
Halisceptrum parvifolia, 88
Heard Island, $7+$
Heliopora, 68
Heteroxenia, 68
Heteroxenia capensis, 67,70
Heteroxenia Elizabethac, 71
Heteroxenia rigida, 71
Homophyton gattyiae, 79
Hydrocorallinae, 93
Isidella capensis, ( $x$ ), 86
Isis dichotoma, so
juncea (Juncella), 8o
Juncella, 78
Juncella elongata, 70, 85
Juncella semmacea, 86
Inncelle: jnncea, 86
Kersuelen, $7+$
Korean Strait, 93
Leptoclimum speciosum, 70
Leptogorgia, 8i, 83
Leptogorgia flammea, 69
Leptogorgia palma, 69
Lobophytum, it
Lophogorgia, 81, 82
Lophogorgia crista, 69
Lutkeni (Gorsonia), 83
mauritiensis (Villogorsia), 70,87
Mauritius, 87
Melitodes, 78
Melitodes albitincta, 81
Melitodes dichotoma, 70 , so
Melitodidae, 80
Mossel Bay, $82^{\circ}$
Muricea chamacleon, 80
Muriccidae, 87
Neah Bay, 93
Nepthya, $8_{+}$
nobilis (Allopora), 93
obesa, (Civermularia), 70, 92
oculina (Allopora), 94
pachyclados (Alcyonimm), 70, 72
palma (Emicella), 69
palma (Gorgonia), 8s
palma (Leptogorgia), 69
papillosa (Eunicella), $69,70,86$
Paragorsia, $8_{+}$
parvifolia (Halisceptrum), ss
Pennatulacea, 87
Pennatulids, 68
pinnata (Gorgonia), $8_{4}$
pinnata (Pterogorsia), it
Platygorgia, 69
Plexauridae, 86
Port Alfred, 70, 92
Port Natal, 88
Primnoidae, 86
Primnoisis, 78
Primnoisis capensis, $69,70,86$
Prince Edward Island, 83
Pterogorgia pinnata, $8_{+}$
Remwardti (Virsularia), 70
reinwardti (Virsularia), 87
rigida (Heteroxenia), 71
Rij Bank, 72, 78, 82, 86, 87
Robben Island, 91
Sarcobelemnon elegans, 89
Sarcophytum, 68, 74
Sarcophytum trochiforme, 67,70
Seal Island, 82
Solanderia verrucosa, 69, 79
speciosum (Leptoclinum), 71
Spongioderma, 78,86
Spongioderma verracosmm, ( $x$ ), 70 , 78
Spongodes, 68
St. Francis Bay, 70,88
Stylaster, 93
Stylaster gracilis, $9+$
Sympodimm coralloicles, $8+$
thyrsoidea (Emephthya), 69
Torres Straits, 93
trochiforme (Sarcophytum), 67, 70
Tubipora, 68
venusta (Allopora), 93
Veretilleae, 89
Veretillum Australasiae, 89
Veretillum elesans, 80
verrucosa (Solanderia), 69, 79
verrucosum (Spongioderma), (o), 70, 78
Villugorsia, 78
Villogorgia mauritiensis, 70, 87
Virgularia Reinwardti, 70
Virsularia reinwardti, 87
Virgularidae, 87
Xeniidae, 70

## SPONGES.

abyssi (Pachastrella), 228
Astrella horrens, 229
Acanthascinae, 220
barbata (Cinachyra), 225
Bathydorus, 224
bonaventura(Tetilla), 226
caliculata (Pachastrella , 227
Cape Natal, 225
casula (Tethya), 226
casula (Tetilia), 226
Cinachyra, 225
Cinachyra barbata, 225
Cinachyra roeltzkowi, 225
Cone Point, 228
coronida (Tetilla), 226
Crateromorpha, 222
Crateromorpha lankesteri, 222
Crateromorpha meyeri, 2?.4
Durnford Point, 227, 229
East London, 223
False Bay, 226, 227
gilchristi (Spongocardinm), 224
Gulf of Manaar, 225
Hexactinellida, 220
hirsuta (Tetilla), 22.5
horrens (Astrella), 229
horrens (Stelletta:, 220)
isorrhopa (Pachastrella), 229
Kerguelen, 225
lankesteri (Crateromorpha), 222
Lion's Head, 222
lophodixitatus (Khabdocalyptus), 220
meyeri (Crateromorpha), $22+$
monilifera (Pachastrella), 228
Natal, 227, 229
Pachastrella, 227
Pachastrella abyssi, 228
Pachastrella caliculata, 227
Pachastrella isorrhopa, 228
Pachastrella monilifera, 228
Pachastrellidae, 227
pedifera (Tetilla), 226
pleorhaphides (Staurocalyptus), 222
plumodigitatus (Rhabdocalyptus), 220
Port Elizabeth, 227
Rhabdocalyptus, 220
Rhabdocalyptus lophodisitatus, 220
Rhabdocalyptus plumodisitatus, 220
Rossellidae, 220
Rossellinat, 222
Spongocardium, 224
Spongocardium silchristi, 224
Stamocalyptus pleorhaphides, 222
Stelletta horrens, 229
Stellettidae, 229
Tethya casula, 226
Tetilia, 226
Tetilla bonaventura, 220
Tetilla casula, 226
Tetilla coronida, 226
Tetilla hirsuta, 225
Tetilla pedifera, 226
Tetillidae, 224
Trachya, 220
voeltzkowi (Cinachỵa), 23
Zanzihar, 225
$=$
-
-


[^0]:    * In a letter received by me after the proofs of this paper were printed, Dr. Gilchrist writes:-"Very large specimens of this species (Crateromorpha lankesteri) were got, the diameter of one of the largest being about three feet. Attempts were made to preserve these, bnt when dried they crumbled on handling.'

[^1]:    ioópporos equally balanced, the name being suggested by the amphityle spicules.

